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A computationally fast method is presented for calculating elec-
trostatic field in arbitrary inhomogeneous dielectric media with
open boundary condition. The method invelves dividing the whole
space into cubical cells and then finding effective dielectric parame-
ters for interfacial cells consisting of several dislestrics, The electro-
static problem is then solved using either the indirect boundary
element method described in this paper or the so-called volume
element method described in the companion paper. Both methods
are tested for accuracy by comparing the numerically calculated
electrostatic fields against those analytically obtained for a dielectric
sphere and dielectric ellipsoid in a uniform field and for a dielectric
sphere in a point charge field. © 1995 Academic Press, Inc.

1, INTRODUCTION

The calculation of electrostatic potential and field for an
arbitrary-shaped inhomogencous diclectric medium with open
boundary condition is an important problem in cngineering,
e.g., for calculating the capacitance of dielectric structures in
conncction with the design of electric devices and high voltage
systems and for non-destructive testing of diclectric materials.
There are several numerical techmiques for caleuluting electro-
static fields which have been developed [1-5]. These techniques
can be broadly divided into two categories:

. The electrostatic problem is formulated in differential
form and the differential equation is solved either by finite
difference method (FDM) where the partial differential equation
is replaced by a set of difference equations or by finite element
method (FEM) where the complicated geometrical struclures
are divided into an irregular grid and the partial differential
equation s solved by either a variational approach or a residual
method. Both of these methods solve for the value of scalar
electrostatic potential.

2. The electrostatic problem is formulated in an integral
form. The moment method, charge simulative method (CSM)
[4], and boundary element method (BEM) are typical methods
which fall in this category. In the CSM, the continuous charge
density on the surface of a dielectric is replaced by fictitious,
discrete charges that are placed inside the dielectric and the
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values and locations of the charges are chosen to satisfy bound-
ary conditions. In the BEM, sometimes also called the surface
charge stimulation method, one deals directly with charge dis-
tributed over the boundary.

The most desirable numerical method is the one which allows
one to rapidly and accurately calculate electrostatic potential,
electrostatic field, and other quantities of practical interest for
an arbitrarily complex inhomogeneous dielectric media with
open boundary conditions. One of the most commonly used
methods is a hybrid of a finite element method and a boundary
element method |2, 5]. In this scheme, BEM is applied for the
extended nonboundary region. In the finite element part, one
meshes the inhomogeneous region into irregular grid elements
such that each element constitutes a homogeneous region. The
remaining region is divided into a regular mesh and then one
solves the appropriate equations for the given boundary condi-
tions. Both the meshing and solving components are computa-
tionally intensive.

In this series of two papers, we present a novel, computa-
tionally {ast and general approach for solving an electrostatic
problem involving inhomogeneous dielectric media and open-
boundary conditions. The approach coasists of two main
steps. In step 1, one tessellates the space of interest into
cubical cells and calculates the effective dielectric constant
for each cell. This method, known as the effective parameter
for interfacial cells (EPIC) method, is described in Section
2. In step 2, one solves the electrostatic problem either by
placing an appropriate charge distribution on the boundaries
of cells or appropriate fictitious charges inside the cells. The
first method, referred to as the indirect boundary element
method (IBEM), is described in this paper, and the second
method, referred to as the volume element method {(VEM),
is described in the following paper. Section 3 is devoted to
the description and detail of IBEM. In Section 4, we give
the results of applying the method for a dielectric sphere
and a dielectric ellipsoid in a uniform electric field and for
a dielectric sphere in the presence of an electric point charge,
and compare the calculated electric field and other electric
quantities with those obtained analytically,
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2. EFFECTIVE PARAMETER FOR INTERFACIAL CELLS
(EPIC) METHOD

In this method, we tessellate the whole space into a regular
cubical grid. In general, a cubical cell will consist of material
of different dielectric properties. The key concept behind the
method is to find an effective dielectric parameter for each cell
such that the calculated physical effects are the same as for the
original case of the cell being occupied by different materials.
This approach was developed by us [7, 8] in connection with
solving the heat conduction problem for inhomogeneous media
involving objects of arbitrary shapes.

We describe EPIC by taking the case of a dielectric sphere
(dielectric constant £ = 5) embedded in an infinite vacuum
space. As shown in Fig. |, we enclose the sphere in a 3 D
rectangular parallelepiped (the cube as a special case) referred
to as enclosure box. If one divides this box into a rectangular
grid, say 5 X 5 X 5, and takes any slice, say between z = |
and z = 2, parallel to the x—y plane (see Fig. 1), then some
celis or volume elements are totally occupied either by the
spherical medium or by vacuum, but some are occupied by
both spherical medium and vacuum. Let us refer to the mixed
cells as interfacial cells. What we need is a method to determine
effective dielectric parameters for such cells.

The procedure 1s illustrated for an interfacial cell, shown in
Fig. 2, with twe surfaces cutting through the cell and one
surface totally enclosed in the cell. Thus, in this cell, there are
regions m, , m,, #13, and my of four different dielectric properties.
In general, an interfacial cell will have N regions, with aniso-
tropic dielectric constants &' (1 = [ = N), with components
e!, 4, & in the x, v, and z directions. The EPIC method
involves calculation of an effective dielectric constant & {with
components &;, &, and &;) for the cell such that if the cell is
occupied by one homogeneous material of dielectric constant
&, the physical effect will be the same as for the original cell
occupied by several materials.

To determine &,, we divide the cell into 10 X 10 columns
parallel to the x direction. For each column j {1 = j = 100),
in general, one will have K regions of lengths L, ..., [, of
dielectric constants gy, ..., &. The equivalent &, for such a coi-
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FIG. 1. Dielectric sphere with € = 5 embedded in vacuum.
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FIG. 2. Volume clement subdividing and effective parameter calculation.

umn of length L is calculated by using the concept of equivalent
capacitor for K capacitors in series:

L k
l=g—— L=21L (1)
2 (L)

The overall g, for the entire cell is then obtained by using the
concept of equivalent capacitor for 100} capacitors in parallel:

&4

:j_l
T 2)

One follows a similar procedure for calculating £, and £, for
v and z directions.

We have implemented a computer graphics method which
takes its input, the shapes of various dielectric objeets occu-
pying the space and dielectric constants of various regions, and
then gives the effective dielectric parameters for a specified
level of tessellation. This method was developed in connection
with the calculation of effective thermal conductivity and is
described in detail in {9]. We should note that in the current
implementation of this method, one requires about a minute of
CPU time on a SUN SPARCstation 10 for a 20 X 20 X 20
grid and only about 10 sec for a 10 X 10 X 10 grid to calculate
effective dielectric constants (compared to about 40 min for
creating irregularly shaped elements for the finite element
method). Further, the CPU time needed is independent of the
complexity of the geometry of the dielectric objects.

We conclude this section by pointing out that even if all the
dielectric media are isotropic, the interfacial cell can have an
anisotropic dielectric constant (g, ¥ &, # &;) due to asymmetric
distribution of different materials in the cell.

3. INDIRECT BOUNDARY ELEMENT METHOD

The EPIC method described in the preceding section allows
one to replace the problem of an arbitrary shaped dielectric
inhomogeneous media with N X N X N cubical cells with
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S=((N+1) X (N+1)X(N+ 1) surface elements, cach of
which is filled with one kind of material, with effective dielec-
tric parameter specified for each material. We now describe
the so-called indirect boundary element method which allows
one to solve the electrostatic problem for such tessellated media.

The traditional boundary element method generally consists
of the following steps [6, 10, 111

1. Transforming the govemning ordinary differential equa-
tion into a boundary-integral equation.

2. Dividing the boundaries into a series of elements over
which the source term is assumed to vary according to interpola-
tion functions. The boundary integral equation is divided into
a set of linear equations of boundary values at the nodes on
the finite discrete boundary.

3. Obtaining a system of linear equations by imposing the
prescribed boundary conditions of the problem, which are then
solved to obtain the boundary values.

In the IBEM, we do not seek a direct solution of the potential,
instead we obtain the polarized charge (source term) distributed
on the boundary surface elements by forcing it to satisty the
boundary conditions.

In the following subsection we describe these steps in de-
tail.

3.1. Boundary Integral Equation—Single Cell

Let € = (g, &;, &) define the dielectric constant in x = x;,
¥y = X3, and z = x, directions for a cubical cell. The electrostatic
potential ® at a point ¥ = (x;, %, x3) is given by the La-
place equation

Vid =0, )]
where
3 3 92
V=g L + gt gy
T O T BT By

The Green's function {also called the fundamentai solution)
@* which is the potential at the point X by the point source on
the point x; satisfies the equation

Vi + 5 = 0, (4)
where 8; is the Dirac delta function

8 = 8(x; — x1)8(x — 1) 8% — x3)-

Making the transformation

x;
i:; | = l! 2;
§ e (i 3)
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and using the property

1

8(x, — ;) = S(Vel(§ — &) = 7206~ .

the Green’s function for the infinite region is given by

1 |
O*() = — .
(1) 47”’0 V £18283

(5)

where

o= \/(:1 = x)f + {x: — X)) + (x; — xsf)l_ (%)

=3 & &3

For our problem, let the polarized charged density at the
boundary surface 7be o(7). The potential, therefore, is given
by the integral equation

®() = [ o()BH(r, 0 dI(7), 7

where I represents all the boundary surface.
On the boundary surfaces the boundary conditions are as
follows:

a2
nan OO
}
02— e, ®)
on on

where (1) stands for the inside of a surface and (2) for the
outside.

Taking the derivative of Eq. (7) in the direction of the outward
normal to the boundary swrface and substituting the boundary
conditions from Eq. (8), we have the boundary integral equation
for the polarized charge density relating it to the normal deriva-
tive of the Green’s Function ®* as

2 el AD*(T, x)
o(x) = M [EO + L‘ a(T) TdF(r)], )

where E° is the initial electric field. Equation (9) is the integral
equation for one cubical cell in the presence of an electric field
E" In the next section, we describe the modifications needed for
the whole spacing consisting of many cubical cells containing
different materials.

3.2. Boundary Integral Equation—Many Cells

To obtain the boundary integral equation for the whole space,
we discretize the charge density at the surface {(a square) of
each cell. For each square element, the surface charge density
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FI1G. 3. Nine-noded Lagrangian quadrilateral element.

can be described by the densities at 9 nodes, as shown in Fig.
3. This approximation for the boundary element is called a
Lagrangian quadrilateral element {6]. For the boundary element
i, let oy be the charge density at the node k (k = 1, ..., 9).
Therefore, the charge density at a point (£, &) on the surface
of element 7, defined by dimensionless coordinates (£, &), with
& and & varying from —1 to +1, is given by [6]

oi(é, &)

66— DEE — Doy +3 (1~ D66 ~ Do

)=

+ 265+ D& — Don + 1 66— DL - B
(= 81 = B+ 3 £(6 + 11~ By

+ ;11- §(& — D&G + Doy + %(1 — E&(E + Doy
+ L&+ D& + Da

9
=;&w. (10)

To calculate the surface charge density for the collection of
cells, we need to inclnde the interaction between various surface
elements and consider the whole boundary surface which con-
sists of the total grid surfaces (boundary elements) of the inter-
ested space. We renumber the S = (N + 1) X (N + 1) X
(N + 1) surface elements as 1, 2, ..., §. By substituting
Eq. (10) into Eq. (9), for each surface element i and its node
k we have the discretized integral equation for the charge den-
Sity o,

A
mk=ca[E&+-ZS (11)

J=lg#

a0
frjaj R,
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where c¢; is a constant for each element i,

s — 5

‘TP el

(12)

EY is the external electrical field at node k of the element /, j
is an index for all surface elements, and jﬁ, is the Green’s
function at the node k of element / with the charge density «;
at element j. Substituting Eqs. (10} and (5) into Eq. (11), we
get the linear discrete equations
s 9
El = E
i=1

4

(13)

Tim Him,ik

m=1

where H,,, is an “‘interaction integral’’ between node k of
element / and node m of element j. For j # |,

bz
Hw= = [ A5 2ar, (142)

where A, is defined by Eq. (10).
Forj = i, m = k, i.e., for interaction between a node with
itself,

Hpim = ci'l, (14b)

while forj = {,m # k, i.e., for interaction between two different
nodes on the same element,
Houw=0, m+ k. (14c)
As shown in the Appendix, the integral in Eq. (14a) can be
calculated analytically. Renumbering the 9 X § = M nodes as
1, ..., M, Eq. (13) can be written as a matrix equation

Ho = Q, (15a)
ie.,
i Ay ot ) [ EY
S o | Il I sl BT
hn'd.l h.;u Pop-s Pam Unm EY

This equation needs to be solved for the M = 9 X § unknown
variables oy, o, ..., o which can then be used to obtain electro-
static potential at an arbitrary point.

3.3. Solution of Matrix Equation

The matrix in Eq. (15} is a dense, asymmetric, and diagonal
dominate matrix. Therefore, it can be solved by using the stan-
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dard Gauss—Seidel method (using the overrelaxation version
of this method, the convergence deteriorates). We note that one
can reduce the size of the matrix by eliminating non-boundary
cells, i.e., those cells for which the coefficient ¢;, defined by
Eq. {12), 1s equal to zero so that there is no boundary surface
charge. For a specific case of a 10 X 10 X 10 grid, the total
number of the boundary element is 11 X 11 X 11 X 3 = 3993,
If one eliminates the non-boundary elements, one is left with
834 interfacial elements, reducing the size of the matrix H in
Eq. (15) from 35937 (= 9 X 3993) X 35937 to 7506 (= 9 X
834) X 7506.

After solving the matrix Eq. (15) for the surface charge
densities at nine nodes of each surface element, one can obtain
the impending electrostatic field at any given point by using a
discrete integral method. By adding the impending field and
the initial field, one can obtain the total final field. One can
also obtain other electrostatic quantities of interest like the total
charge and dipole moment. In the next section, we describe
the implementation of the procedure and give the results of its
application for sample problems.

4. IMPLEMENTATION, EXPERIMENTS, AND RESULTS

To recap, the indirect boundary element method described
in this paper consists of the following steps:

1. Take as input the geometrical shapes of different dielec-
tric objects, together with their dielectric properties.

2. Divide the space into a cubical grid and use a computer-
graphics-based algorithm version of EPIC to obtain effective
dielectric constants for each of the cells.
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3. Calculate the coefficient ¢; to determine the boundary
surface elements, calculate the relative coefficient H;; between
boundary surface element / and element j, and calculate the
normal components of the initial electric field on every bound-
ary surface element.

4. Solve the matrix Eq. (15) to obtain the surface charge
distributions on the boundary surface elements.

5. Calculate the final field at any desired position and other
parameters of interest like the total positive charge, dipole
vector, capacitance and inductance.

We wrote a computer program in C language and imple-
mented the method on a SUN SPARCstation 10. We tested our
numerical solution against analytical results for three cases: (1)
a dielectric sphere in a uniform parallel field; (2) an ellipsoid
in a uniform paraliel field, and (3} a dielectric sphere in a point
charge field. For each of these cases, we treated the conducting
material as a special case of dielectric material with very high
dielectric constant (& = 10°).

4.1. Dielectric Sphere in a Parallel Field

Here we have a dielectric sphere of radius 0.5, embedded in
a uniform electric field of strength 100, parallel to the z-direc-
tion. The analytical solution for this problem is well known.

In Fig. 4 are given the angular charge distribution on
the surface of the sphere as charge density vs. angle in radian
(angle = 0 corresponds to the direction parallel to the field,
and angle = 7/2 to the direction perpendicular to the field) for
three resolution levels of gridding, 5 X 5 X 5, 10 X 10 X 10,
and 20 X 20 X 20. As to be expected, the resolution level of
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FIG. 4, Charge distribution on the sphere between 0 to 7/2.
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TABLE 1

Comparison of Numerically Calculated and Analytical Results for the Dipole Moment (in the
z-Direction) and Total Positive Charge for a Dielectric Sphere in a Uniform Electric Field of Strength

100 in the z-Direction

Dipole moment

Total positive charge

Dielectric
constant & Calculated  Analytical % Difference Calculated  Analytical % Difference
5 89.85 89.76 0.10 134.75 134.64 0.08
25 140.37 139.63 0.53 209.92 209.44 0.2
108 158.68 157.08 1.02 237.78 235.61 0.92

20 X 20 X 20 gives the most accurate result, the resolution
level of 10 X 10 X 10 gives a somewhat less accurate but
still acceptable result, and the resolution level of 5 X 5 X 5
gives a very poor estimate. The computer times for these three
levels of resolution are 60 min, 60 sec, and 15 sec, respec-
tively. We find a resolution level of 10 X 10 % 10 as an opti-
mum choice keeping accuracy and computer time in mind.
We carried out the remaining simulations for this level of
resolution,

In Table 1 is given the comparison between numerical
and analytical results for the dipole moment in the z-direc-
tion {dipole moments in the x and y directions are zero for
both numerical and analytical cases) and the total positive
charge. The numerical method is very accurate with error less
than or equal to 0.7% for a large range of dielectrics (¢ =
1000}, and for a near-conducting sphere the error is around
1%.

4.2. Dielectric Ellipsoid in a Parallel Field

In this case, the dielectric sphere is replaced by a dielectric
ellipsoid of semi-axes 3, 4, and 5, with its surface defined by
the equation

X2 yz 22 B
FERrrR

with initial field of strength 10 parallel to the z-axis.

Because of the relative sizes of the three axes, we divided
the space into a grid of 6 X 8 X 10. In Table II are given
the results for the dipole moment in the z-direction and the
impending field inside the ellipsoid (we omit the comparison
for the total positive charge as we did for the sphere case
because the value for the analytical case is not available). As
one can see, the numerical values are quite accurate, even for
the near-conducting sphere.

4.3. Dielectric Sphere in a Point Charge Field

This case is similar to the first case except that the initial
field is caused by a point charge of value 2000 located at a
distance d (d > 0.5) from the center of the sphere along the
z-axis.

When the point charge is very far from the sphere, the initial
field near the sphere is almost a parallel field, and, therefore,
our method should yield accurate results. This is shown in
Table 11l where we give the result for 4 = 3. As the charge is
brought near the sphere, the accuracy of the method decreases.
In Table IV we give the results for the worst case of near-
conducting sphere for various values of the distance d. The
method has limited accuracy for = 0.6. When d = 0.5, ie.,
when the point source is on one of the boundary element, we
have a singularity when we solve the integral equations and
the method fails. We have not found a way to overcome this
problem.

TABLE 11

Comparison of Numerically Calculated and Analytical Results for the Dipole Moment (in the
z-Direction) and Impending Field in the z-Direction Inside a Dielectric Ellipsoid of Semi-axes 3,
4, and 5, Kept in a Uniform Electric Field of Strength 10 in the z-Direction

Dipole moment

Inside impending field

Dielectric
constant & Calculated  Analytical % Difference Calculated  Analytical % Difference
5 5154.835 5129.2 0.15 —4.91 —4.90 020
25 8973.17 89232 0.56 —8.58 —8352 0.67
10° 10600.8 10472.0 1.23 -10.15 —10.0 1.54
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TABLE III

Comparisen of Numerically Calculated and Analytical
Results for the Dipole Moment (in the z-Direction) for
a Dielectric Sphere of Radius 0.5 in an Electric Field
Caused by a Point Charge of Value 2000 Located at a
Distance 3 from the Center of the Sphere

Dipole moment

Diglectric
constant £ Calculated  Analytical % Difference
5 —1590 —15.87 0.20
25 —24.90 —24.69 0.86
10 —28.31 —27.78 1.92

APPENDIX: CALCULATION OF INTERACTION
INTEGRAL H,, 4

In this appendix, we show that the integrals H,, ; defined by
Eq. {14a) can be numerically integrated.

For m = 1, j # i (i.e., node 1 on the jth element), and if
the distance between node m and node k (of element {) is not
zero, from Eqs. (10) and (14a)

hi Bdk
Hpa= E‘éjl} G- D&EE- D ar:kdrj
_ L, aq)jfk 1 1
16 an f—\ dé, Jlldglfl(fl - D&(& -1
_hh 3%k
36 an ’ (Al)

where [, i = 1, 2, 3, are the length of a cell in x, ¥, and ¢
directions. For a cubical cell, {, = [, = I5. The normal derivative

TABLE 1V

As Table I Except that the Dielectric Constant of the
Sphere Is Kept Fixed at 10° and the Distance of the
Charge Is Varied from 0.6 to 6

Dipole moment

Distance
of charge Calculated  Analytical % Difference
0.6 —740.97 —694.44 6.70
1.0 —258.03 —250.00 3.21
3 ~28.31 —27718 1.92
6 —7.02 —6.94 1.i2
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of ®# can be expressed as

aq)fii _ (Znj1 — Xnit)

an (e ji — Xa)? + oy — Xo0)' + (a0 — X308

(A2)

where xn (r = 1, 2, 3) stands for the normal coordinate of
node k on element /. Substituting Eq. (A2) into Eq. (A1), we get

= % (xn‘jl - x.n,l'in)
36 ((rj) = Xl + (Ko — Xl + (Ko — X307

(A3)

Repeating the procedure for other nodes m = 2, 3, ..., 9 ¢on
the jth element, one obtains the general equation for m = 1,
2,09,

% (xn.jm - xn.iix)
a ((xm— xl,é&)z + (X jm — Xou) + (X3m — x],ik)2)3lz’

H; i =

7

(Ad)

wherea = 9form = 2,4,5,6,8anda = 36 form =
7, 9.

We should make an important observation. It §, = I, = &,
i.e., we divide the whole space into a cubical grid and fix the
number of grids to say N X N X N, then the matrix element
Hi. defined by Eq. (A4), is effectively independent of the
dielectric properties of the media and hence needs to be calcu-
lated only once. Restating another way, we can a priori calculate
and store the elements of the matrix I{ for a given fineness of the
cubical gridding process and thus make the indirect boundary
element method computationally very fast as we solve different
electrostatic problems.

1, 3,
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